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Up to this point, we have only considered constrained optimization problems at a single point in time.
However, many constrained optimization problems in economics deal not only with the present, but
with future time periods as well. We may wish to solve the optimization problem not only today, but
for all future periods as well.

The following de�nitions will be useful: A control variable is a variable you can control; for example,
you may not be able to control how much capital is in the economy initially, but you can control how
much you consume. Things we cannot control completely, but that are nevertheless a�ected by what
we choose as our control are called state variables. For example, the amount of capital you have
tomorrow depends on the amount you consume today. In optimization problems over time, we want to
solve for the control variables at every point of time. The state variables can show up in the objective
function or in the constraints, but will be determined by the path of the control variables.

We will look at optimization problems in discrete time and in continuous time, both of which are
frequently used in economics. In discrete time problems, we think of time passing in given periods,
e.g. a year. A solution will give us a value xt for the control variable in every time period t . In
continuous time problems, we think of time passing continuously. A solution will give us a function
(or �ow, or stream) x(t) of the control variable over time.

1 Optimization in Discrete Time

You will have to use optimization in discrete time mainly when you are solving life-time consumption
problems in Macro. We will therefore look at the standard problem in some detail and use it to outline
the general method for solving optimization problems over discrete time.

1.1 Life Time Consumption Problem with Fixed Assets in Discrete Time

Assume an agent has a utility function u(ct), where ct is consumption in period t and u(ct) is a concave
function. The agent lives from period 0 until forever and discounts the future at rate β ∈ (0, 1). Her
life-time utility function is therefore

U ({ct}∞0 ) =

∞∑
t=0

βtu (ct) .

Now suppose she is endowed with initial assets A0 and does not earn any income during her life. (This
is a similar problem to what a retired person would face if she had no income.) The interest rate in
the economy is r. Then her budget constraint is

A0 ≥
∞∑
t=0

ct

(1 + r)
t .
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How should the agent choose ct for each period such that she maximizes her total life time utility and
satis�es the budget constraint? In other words, we want to �nd the solution to

max
{ct}∞0

U ({ct}∞0 ) subject to A0 ≥
∞∑
t=0

ct

(1 + r)
t

The Lagrangian for this problem can be written as

L =

∞∑
t=0

βtu (ct) + λ

(
A0 −

∞∑
t=0

ct

(1 + r)
t

)
We know that the constraint will always be binding so long as our utility function exhibits nice
properties such as local non-satiation. Therefore we can solve the Lagrangian as if the inequality
constraint was an equality constraint.

Unfortunately, this Lagrangian will have an in�nite number of �rst order conditions since t goes to
in�nity (i.e. there are an in�nite number of ct inputs to the Lagrangian function). This is where a
di�erence equation comes in handy. If we can come up with some sort of condition that must hold
between consumption in any two periods, the we can write a di�erence equation, iterate it, and solve
it for all t using an initial condition.

Find the �rst order conditions of the Lagrangian with respect to an arbitrary ct and ct+1:

∂L

∂ct
= βtu′(ct)− λ

1

(1 + rt)
= 0

∂L

∂ct+1
= βt+1u′(ct+1)− λ

1

(1 + rt+1)
= 0

Dividing the top equation by the bottom equation we have

u′(ct)

u′(ct+1)
= (1 + r)β

Say our within period utility function is

u(ct) = ln(ct),

where sigma is a constant greater than or equal to 0. Our �rst order condition becomes

ct+1

ct
= (1 + r)β

ct+1 = [(1 + r)β] ct

The solution to this linear di�erence equation is

ct = c0 [(1 + r)β]
t
.

Now we have solved our maximization problem for all time periods.

Well, not quite. We don't know what c0 is. In order to �nd it, we need to plug this condition into our
budget constraint.

A0 =

∞∑
t=0

ct

(1 + r)
t =

∞∑
t=0

c0 [(1 + r)β]
t

(1 + r)
t =

∞∑
t=0

c0β
t =

c0
1− β

c0 = (1− β)A0

Therefore, the solution to the agent's optimization problem is

ct = (1− β) [(1 + r)β]
t
A0
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1.2 General Problems

The strategy for solving a general discrete time optimization problem is as follows:

1. Write the proper Lagrangian function.

2. Find the 1st order conditions

3. Solve the resulting di�erence equations of the control variables

4. Use the constraints to �nd the initial conditions of the control variables

5. Plug the constraints into the di�erence equations to solve for the path of the control variable
over time

2 Optimization in Continuous Time

Suppose we have a value function f(x, y), where x is a control variable and y is a state variable. We
want to control the �ow of the value of this function over time so that the lifetime value of the function
will be maximized. In other words, we want to �nd x at every moment t such that

ˆ ∞
t=0

f(x(t), y(t))dt

is maximized subject to constraints. Notice that the maximizer we are looking for is a function itself,
x(t). It gives us the time path of the control variable x, not just a particular level of x.

Since time is continuous, the constraint to this problem cannot be a static function. It must tell me
the change in my state variable at each point in time, and therefore it must be a di�erential equation
ẏ(t) = F (x(t), y(t)).

To make things more concrete, we will again look at the basic life time consumption problem that
you will encounter in Macro. This is basically the same problem as discussed above, but instead of
assuming there are discrete time periods, we now assume that time is continuous. That is, instead of
�nding consumption ct for every time period t, we are now looking for a function c(t) that will tell us
the level of consumption at every moment of time t.

2.1 Life Time Consumption Problem with Fixed Assets in Continuous

Time

Assume an agent has a utility function u(c(t)), where c(t) is consumption at time t and u(ct) is a
concave function. The agent lives from period 0 until forever and discounts the future at rate β ∈ (0, 1).
Her life-time utility function is therefore

U ({c(t)}∞0 ) =

ˆ ∞
0

e−βtu (c(t)) .

(Notice how the formula di�ers for the one in discrete time.) Now suppose the agent is endowed with
initial assets A0 and does not earn any income during her life. The interest rate in the economy is r.
Her budget constraint in continuous time can be written as a constraint on the change of her assets
and the initial condition:

Ȧ(t) = rA(t)− c(t) and A(0) = A0
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The question is how the agent should choose the function c(t) to maximize her total life time utility
and satisfy the budget constraint. In other words, we want to �nd the solution to

max
{c(t)}∞0

U ({c(t)}∞0 ) subject to Ȧ(t) = rA(t)− c(t) and A(0) = A0.

To solve optimization problems in continuous time, we abstract from the Lagrangian and use a Hamil-
tonian. The proof behind why the Hamiltonian works will not be presented in this class, but will be
presented in your �rst semester math class instead.

There are two equivalent formulations of the Hamiltonian; the current value Hamiltonian and the
present value Hamiltonian. The current value Hamiltonian for this problem would be expressed as

Hc = u(c) + λȦ.

Notice this is almost exactly like the Lagrangian function. However, the �rst order conditions are
slightly di�erent:

∂H

∂c
= 0

∂Hc

∂λ
= Ȧ

∂Hc

∂A
= βλ− λ̇

We would need to solve this system using our analysis from di�erential equations.

The present value Hamiltonian would be formulated this way:

Hp = e−βtHc = e−βtu(c) + µA.

Notice the objective function is now discounted in the Hamiltonian, whereas before it was not. The
�rst order conditions are

∂Hp

∂c
= 0

∂Hp

∂µ
= Ȧ

∂Hp

∂A
= −µ̇

Let's look at an example where we have a utility function given.

Example: max
´∞
0
e−βt ln [ct] dt subject to Ȧ = rA− c. Assume that A0 is known.

We form the current value Hamiltonian

H = ln(ct) + λ (rA− c)

The �rst order conditions are
∂H

∂c
=

1

c
− λ = 0

∂H

∂λ
= ra− c = Ȧ

∂H

∂A
= λr = βλ− λ̇
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From the �rst condition, we get ln(ct) = − ln(λt). Taking the derivative of both sides of this function,
we get

ċ

c
= − λ̇

λ
.

From the third condition we get

β − r = λ̇

λ

Setting these two conditions equal to each other we get

ċ

c
= r − β

The di�erential equation which solves this is ct = c0e
(r−β)t. Now it remains to �nd the initial condition

for c0, which we can �nd using the budget constraint. We know that the present discounted value of
our consumption must equal our initial assets, so

A0 =

ˆ ∞
0

e−rtc(t)dt =

ˆ ∞
0

e−rtc0e
(r−β)tdt = c0

ˆ ∞
0

e−βt = c0
1

β

c0 = βA0

Therefore, the solution is
ct = βA0e

(r−β)t

2.2 General Problems

The strategy for solving a general continuous time optimization problem is as follows:

1. Write the Hamiltonian.

2. Find the �rst order conditions.

3. Obtain di�erential equations in control and state variables.

4. Solve one of them.

5. Use the budget constraint to �nd the initial conditions.

3 Homework

Go over the examples presented in these notes and make sure you understand every step.
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